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Brief review of orbital targeting

Achieve an orbit with specific
characteristics, objective vector (Gamma)

Requires the computation of the partial
derivatives of the objectives with respectto
the control vector

A control vector (U) is modified iteratively
with a Newton Raphson process

The Newton Raphson differential
correctionrederived in paper, sectionV.B.
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Computing partial derivatives

Analytically
Impractical for arbitrary objectives
Error prone and labor intensive

Finite differencing
Common method (used by NASA GMAT and STK Astrogator)
Precision of computation limited to half of machine precision

Automatic differentiation
Machine precision computation
Negligible computational overhead
Uses dual number theory



Dual number theory 1/2
Definition

Flavor of complex numbers with a nilpotent element, epsilon

D=R[e]={z=a+be| (a,b) e R%, > =0and € # 0}
Moreover, for z = a + be where z € D, (a, b) € R, let us define the real and dual parts of a dual number such as

real(z) = a

dual(z) = b



Dual number theory 2/2
Why it works

The nilpotent elementenables automatic differentiation, as can be seenfrom a Taylor
series expansion (recall that epsilonsquared is zero)

f:D—>D,(ab)erR?

(e

-(n) n.n
Fla+be) = Z f (zl)b £
n=0 '
= f(a)+b df (@) £
da

real(f(a+ be)) = f(a)

- _ pdf(a)
dual(f(a+be)) = b—



Hyperdual numbers1/3
Definition

Defining multiple orthogonal nilpotent elements enables multiple derivatives
D® =Rler, €] = {z = a+be, +cey +desey | (ab,c.d) RY e =0, €, #0, y € {x.y}, e, 0} (6)

This mathematical tool enables auto-differentiation of multi-variate functions as follows, where dual, corresponds

to the y-th dual number, i.e. the number associated with €.
f:D?* > D% (x,y) e R?

real(f(x+ec, y+€)) = f(x,y)

Vdualy(f(x+€x. y+6€)) = 2 f(x.y)

kduafy{ fx+e, y+ey)) = % f(x,y)



Hyperdual numbers 2/3
Example

Assume the following function and its hyperdual space
[TR-R, (x,y) e R?
fla,y) =2 —0.2y +x
L e =621

)

— Lyv)=-04

5y /(60 =04
Let us extend the definition of this function to D?.

g:D—>D, (x,y) e R?

gx+en, vie) =2(x+6) —02(y+ &) + (x +6x)



Hyperdual numbers 3/3
Example

Each nilpotent elementends up being a factor of its respective partial derivative

gx+er, yHe) =2(x+6x) —0.2(y+ey) + (x +€x)
= 2(x” +3x%€,) = 0.2(y* +2y€,) + (x + €,)

= (27 = 0.2y7 + x) + (6x7 + e, — 0.4vye,
¥



Arbitrary orbital targeting 1/2

Compute partial derivative of orbital element

Cartesian representation of an orbit

2453645+ 6. +0+0+0+0+0  km
Create a dual space foreach Cartesian ~243643+0+6, 40404040 km
component 6891.037+0+0+6 +0+0+0  km

. . 50886+ 0+0+0+¢, +0+0  kmis
Compute any orbital parameter (semi-

major axis, eccentricity, etc.) in the
hyperdual space

—S0886+0+0+0+0+¢,, +0 kmis

LO+0+0+0+0+0+¢, kms

Partial derivative of that parameterwith

respectto each component appears ..
£=-253422 km~ /s

Many programming libraries compute g—f = —0.0021 km/s ﬁ = —0.0021 km/s” ;—& = +0.0060 km/s"
hyperdual numbers, such as hyperdual in ~ , ., ¢ o _
RUSt, HyperDuaINumbers.jI in Julia ﬁ = 50886 km/s E = —5.0886 km/s I = 10000 km/s



Arbitrary orbital targeting 2/2

Compute partial derivative matrix of objectives to control

Hyperdual numbers can be used to
compute the state transition matrix (Phi)

A componentwise replacementcan be

used to compute the partial derivative J =

matrix without finite differencing

Method only valid if the state transition
matrix is an acceptable approximation of
the dynamics
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Conclusion

Hyperdual numbers simplify the targeting method

Results match GMAT but up to 3 times faster

Y X

BLAZING FAST ASTRODYNAMICS

Limitation of state transition matrix implies that this method is extremely well suited for
multiple shooting and finite burn optimization

Implemented inNyx Space, a free toolkit for high fidelity mission designand orbit
determination, validated against GMAT: https://nyxspace.com

Objective Finite differencing Hyperdual targeting
Av (m/s) Tterations Time (s) | Av (m/s) Iterations Time (s)
SMA = 8100 km 35.504 3 0.326 35.505 3 0.099
SMA = 8100 km and ECC =04 | 3116.1 g 0.226 3094.0 8 0.104



https://nyxspace.com

