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HYPERDUAL NUMBERS FOR ARBITRARY ORBIT TARGETING

Christopher Rabotin*

When designing maneuvers, one must compute the variation of the orbital characteristics
of the final orbit with respect to a maneuver at the start of the transfer. These variations
correspond to the partial derivatives of the destination orbital elements over the transfer arc.
Most mission design software, such as STK Astrogator and NASA GMAT, compute these
partial derivatives by finite differencing. This method is computationally heavy and its pre-
cision is limited to half of the precision of the computer. This paper demonstrates how to
use dual number theory to compute the partial derivatives of any arbitrary orbital element
with respect to the initial state of the trajectory, and paper provides a table for the variation
of orbital elements with respect to Cartesian state vector, a useful reference for novel ma-
neuver design. Validation of the dual numbers method for targeting is also detailed, with test
cases and performance benchmarks between GMAT and the free software Nyx, a blazing fast
astrodynamics toolkit available in Rust and Python.

NOMENCLATURE

Φ(ti, tf ) state transition matrix from time ti to time tf
∂Xf

∂Xi
gradient of Xf with respect to Xi

ε the dual number
γ̇ the time derivative of the γ variable
Γk the objectives vector of a targeting sequence at time k
Uk the control vector of a targeting sequence at time k

INTRODUCTION

In the field of trajectory optimization, mission designers aim to achieve an orbit whose characteristics
match specific conditions required by the mission. A set of control variables, U, is modified at each iteration
of the optimization algorithm such that the trajectory converges toward the objective vector Γ. To ensure
convergence, the partial derivatives of the objectives with respect to the control variables must be computed.
More specifically, the objectives are computed for time tf when the objectives must be met, and the control
variables are modified at time ti when the mission profile allows for them to be modified, cf. Equation 1.

∂Γf
∂Ui

(1)

A common approach, used by NASA GMAT and many others, is finite differencing, where each objective
is recomputed after applying a small perturbation to the control variable. The ratio of the difference in
objective over the perturbation leads to the partial derivative of that objective with respect to that control
variable. Although this method works well in theory, in practice these partial derivatives are only precise to
half of the precision of the computer because the order of magnitude of the perturbation is small and dividing
the difference of two large numbers by a very small number leads to rounding errors.
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Section introduces the mathematical notions of dual numbers and hyperdual spaces, along with their error-
free auto-differentiation properties. Then, the computation of the partial derivatives of orbital elements with
respect to their Cartesian representation is illustrated. Section is summarized by a reference table detailing
which orbital elements are affected by which Cartesian elements. This reference is useful for mission de-
signers regardless of whether their toolkit is enhanced with automatic differentiation. Subsequently, section
shows that one can more precisely compute Equation 1 by it splitting up into a multiplication of simpler
partial derivatives. This method is also less computationally heavy and the mathematics are easier to follow.
This section also re-derives a Newton-Raphson differential corrector where the state transition matrix and
the orbital element partial derivatives are computed using hyperdual numbers. Finally, section provides a
brief overview of the Nyx astrodynamics toolkit, programmable from Python and Rust. Nyx is free software
(AGPLv3 license) for mission design and orbit determination with an emphasis on Monte Carlo analyses; its
computations are validated against GMAT. This section also shows two distinct validation examples compar-
ing the performance of Nyx to GMAT for the same maneuver design scenarios.

DUAL NUMBERS AND HYPERDUAL SPACE

Dual number theory enables automatic differentiation. This may be used to compute the the state transition
matrices to machine precision without relying on finite differencing.1 For the sake of clarity, the introduction
to dual number theory is repeated here.

Dual number theory

Dual numbers are a flavor of complex numbers.2 The ubiquitous set of complex numbers, C, may be
defined as follows, where i is the imaginary number:

C = R[i] = {z = a+ bi | (a, b) ∈ R2, i2 = −1} (2)

Similarly, we may define the set of dual numbers as follows, where ε is the dual number:

D = R[ε] = {z = a+ bε | (a, b) ∈ R2, ε2 = 0 and ε 6= 0} (3)

Moreover, for z = a + bε where z ∈ D, (a, b) ∈ R, let us define the real and dual parts of a dual number
such as {

real(z) = a

dual(z) = b
(4)

An auto-differentiation property emerges from the addition of this nilpotent element when applying a
Taylor series expansion and recalling that ε2 = 0 (thereby eliminating all higher order terms).3, 4 Evidently,
this result is only valid for values of a where the function is differentiable.

f : D→ D , (a, b) ∈ R2

f(a+ bε) =

∞∑
n=0

f (n)(a)bnεn

n!

= f(a) + b
df(a)

da
ε{

real(f(a+ bε)) = f(a)

dual(f(a+ bε)) = bdf(a)
da

(5)

By choosing b = 1, the first derivative comes out for free by simply evaluating the function f .
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Hyperdual spaces

We can further extend the dual numbers to a hyperdual space. Let us define a hyperdual space of size 2
as follows, where εx and εy are the dual numbers for the X and Y variables respectively. Subsequently, εj
corresponds to the j-th dual number in a hyperdual space.

D2 = R[εx, εy] = {z = a+bεx+cεy+dεxεy | (a, b, c, d) ∈ R4, ε2γ = 0, εγ 6= 0, γ ∈ {x, y}, εxεy 6= 0} (6)

This mathematical tool enables auto-differentiation of multi-variate functions as follows, where dualγ
corresponds to the γ-th dual number, i.e. the number associated with εγ .

f : D2 → D2, (x, y) ∈ R2
real(f(x+ εx, y + εy)) = f(x, y)

dualx(f(x+ εx, y + εy)) = ∂
∂xf(x, y)

dualy(f(x+ εx, y + εy)) = ∂
∂yf(x, y)

(7)

Example

Let us detail a computation example of a smooth multivariate polynomial function defined over all reals.

f : R→ R, (x, y) ∈ R2

f(x, y) = 2x3 − 0.2y2 + x

∂

∂x
f(x, y) = 6x2 + 1

∂

∂y
f(x, y) = −0.4y

(8)

Let us extend the definition of this function to D2.

g : D→ D, (x, y) ∈ R2

g(x+ εx, y + εy) = 2(x+ εx)3 − 0.2(y + εy)2 + (x+ εx)
(9)

Recalling that ε2 = 0,
(x+ εx)2 = x2 + 2xεx

(x+ εx)3 = x3 + 3x2εx
(10)

Hence, g may be written as follows:

g(x+ εx, y + εy) = 2(x+ εx)3 − 0.2(y + εy)2 + (x+ εx)

= 2(x3 + 3x2εx)− 0.2(y2 + 2yεy) + (x+ εx)

= (2x3 − 0.2y2 + x) + (6x2 + 1)εx − 0.4yεy

(11)

As expected from Equation 7, the dualx part of g corresponds to the partial of f with respect to x, the
dualy part of g corresponds to the partial of f with respect to y, and the real part of the g corresponds to f .

COMPUTING ORBITAL ELEMENT PARTIAL DERIVATIVES IN HYPERDUAL SPACE

Cartesian coordinates are a common non-singular orbital representation: [x, y, z, vx, vy, vz]
T where vx =

ẋ, vy = ẏ, and vz = ż. For an arbitrary orbital element γ, we can therefore compute its partial derivative
with respect to its Cartesian representation X as represented in Equation 12.
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∂γ

∂X
(12)

First, one must generate a hyperdual space where one dual number exists for each Cartesian component
of position and velocity: εθ where θ = {x, y, z, vx, vy, vz}. Then, the orbit must be expressed in that space.
Finally, the computation of the orbital element is computed in that hyperdual space accounting for the dual
number theory properties defined in Equation 6.

Orbital energy example

The orbital energy ξ is computed from the gravitational parameter µ, the radius vector r and the norm of
the velocity ||v||.

ξ =
||v||2

2
− µ

r
(13)

Equation 14 shows an example of an orbit whose semi-major axis is 7864 km, inclination is 63.5◦, ec-
centricity is 0.124, RAAN is 138.9◦, argument of periapsis is 45.9◦, and true anomaly is 87.8◦. Table 1
summarizes how each Cartesian component affects specific orbital parameters for the example orbit, where
++ means a large effect, + a small effect and 0 no effect.

oD =


−2436.45 + εx + 0 + 0 + 0 + 0 + 0 km
−2436.45 + 0 + εy + 0 + 0 + 0 + 0 km
6891.037 + 0 + 0 + εz + 0 + 0 + 0 km
5.0886 + 0 + 0 + 0 + εvx + 0 + 0 km/s
−5.0886 + 0 + 0 + 0 + 0 + εvy + 0 km/s

1.0 + 0 + 0 + 0 + 0 + 0 + εvz km/s

 (14)

As per Equation 13, we start by computing the magnitude of the velocity vector and then its square. By
setting µ = 398600.4415 km3 · s−2 and r to the first three rows of Equation 14, Equation 15 details the
computation of the partial derivative of the orbital energy with respect to each Cartesian orbital element.
Note that these computations are performed by the open-source Rust package hyperdual.5

|v| = 7.2655 + 0.0000εx + 0.0000εy + 0.0000εz + 0.7004εvx − 0.7004εvy + 0.1376εvz

|v|2 = 52.7879 + 0.0000εx + 0.0000εy + 0.0000εz + 10.1772εvx − 10.1772εvy + 2.0000εvz

ξ = −25.3422− 0.0021εx − 0.0021εy + 0.0060εz + 5.0886εvx − 5.0886εvy + 1.0000εvz

(15)

In other words, we have computed the orbital energy and its partials with respect to each Cartesian com-
ponent, summarized in Equation 16.

ξ = −25.3422 km2/s2

∂ξ

∂x
= −0.0021 km/s2 ∂ξ

∂y
= −0.0021 km/s2 ∂ξ

∂z
= +0.0060 km/s2

∂ξ

∂vx
= 5.0886 km/s3 ∂ξ

∂vy
= −5.0886 km/s3 ∂ξ

∂vz
= 1.0000 km/s3

(16)
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Parameter ∂·
∂x

∂·
∂y

∂·
∂z

∂·
∂vx

∂·
∂vy

∂·
∂vz

Argument of Latitude + + + ++ ++ ++
Argument of Peripase + + + ++ ++ +

Apoapsis ++ ++ ++ ++ ++ ++
C3 + + ++ ++ ++ ++

Declination + + + 0 0 0
Eccentric Anomaly + + + + + +

Eccentricity + + + ++ ++ ++
Energy + + + ++ ++ ++

Flight Path Angle + + + + + +
Momentum magnitude (H) ++ ++ ++ ++ ++ ++

HX 0 ++ ++ 0 ++ ++
HY ++ 0 ++ ++ 0 ++
HZ ++ ++ 0 ++ ++ 0

Inclination + + + + + +
Mean Anomaly + + + + + +

Periapsis ++ ++ ++ ++ ++ ++
Right Ascension + + 0 0 0 0

RAAN + + + ++ ++ ++
Semi Parameter ++ ++ ++ ++ ++ ++
Semi major axis ++ ++ ++ ++ ++ ++
True Longitude + + + ++ ++ ++

Table 1. Effect of each Cartesian component on select orbital parameters for example orbit

HYPERDUAL NUMBERS FOR ARBITRARY ORBIT TARGETING

State transition matrix

The state transition matrix (STM, Φ) is a linearization procedure of a dynamical system. It is the gradient
of the spacecraft dynamics at a reference point valid only for a short period of time. Equation 17 shows that
the STM from time ti to tf is equal to the partial derivative of the orbit (as a state vector) at time tf with
respect to the orbit at time ti, where tf > ti.

Φ(ti, tf ) =
∂Xf

∂Xi
(17)

In practice, in an ordinary differential equations integration scheme like Runge-Kutta, one will compute the
gradient of the accelerations affecting a spacecraft, evaluate those at each sub-step taken by the integrator, and
perform a weighted-sum of these evaluations. The Nyx astrodynamics toolkit, described in section , uses this
method for all its gradient computations, achieving 64-bit precision on a 64-bit architecture. This method has
been thoroughly validated and leads to a significantly better linearization than a finite differencing method.1, 6

Newton-Raphson differential corrector

Although differential correctors are industry standards, the literature tends to focus on the mathematical
concepts more than on the practical and implementation details.

A Newton-Raphson differential corrector applies the Newton-Raphson root finding algorithm to trajectory
design to satisfy some objectives (Γ∗) provided some control variables (U).7–10 The control variables must
be independent of each other while the objectives must vary with a variation in the controls. The algorithm
will iteratively compute small corrections to the control vector until the objectives are met with sufficient
precision, typically defined by the user.
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Let Γ∗ be the vector of desired objectives at time tf and Γf be the achieved objectives at time tf , and
let Ui be the control vector at time ti, where tf ≥ ti. Given some control vector Ui applied at time ti, the
trajectory is propagated until time tf where the objectives Γf are computed. Then, the objective error vector
is computed, as in Equation 18. Note that at the first iteration, the control vector is typically provided by the
user, but a vector of zeros also works. Also note that, most commonly for impulsive maneuver design, the
control vector is simply a change in the velocity vector, i.e. Ui = ∆vi.

∆Γ = Γf − Γ∗ (18)

This error vector, ∆Γ, must be mapped back to the controls at time ti. This is done by computing the
Jacobian of the controls with respect to the objectives, sometimes called the sensitivity matrix.9 Equation 19
shows a Jacobian with n control variables and m objectives. An easy method to remember how to organize
the Jacobian is that the component of the numerator remains fixed navigating left to right (like an arrow
pointing right) and the component of the denominator remains fixed going from top to bottom (like an arrow
pointing downward).

J =
∂Γf
∂Ui

=


∂Γf0

∂Ui0
. . .

∂Γf0

∂Uin

...
. . .

...
∂Γfm

∂Ui0
. . .

∂Γfm

∂Uin

 (19)

Equation 20 shows how the error in objectives and the inverted Jacobian is used to update the controls
variables for the next iteration of the Newton-Raphson algorithm.

δUi+1 =

(
∂Γf
∂Ui

)−1

·∆Γ =
∂Ui

∂Γf
· (Γf − Γ∗)

Ui+1 = Ui + δUi+1

(20)

Note that if the number of control variables and the number of objectives do not match, a Moore-Penrose
pseudo-inverse must be used. If there are more control variables than objectives, Equation 21 applies, other-
wise use Equation 22.

J−1 ' JT ·
(
J · JT

)−1
(21)

J−1 '
(
JT · J

)−1 · JT (22)

Applying hyperdual numbers to targeting

As seen previously, hyperdual numbers allow machine-precision computation of the state transition matrix.
Moreover, they can also be used to compute the partial derivatives of any orbital element with respect to the
Cartesian orbit representation. Therefore, we can rewrite each component of the Jacobian from Equation 19
with those intermediate steps as is done in Equation 23, where Xi is the Cartesian state at the time ti when the
control vector Ui is applied and Xf is the Cartesian state at the time tf when the objectives Γf are computed.
It is important to note that Equation 23 is used to replace each component of the Jacobian one at a time.

∂Γf
∂Ui

=
∂Γf
∂Xi

· ∂Xi

∂Ui
=
∂Γf
∂Xf

· ∂Xf

∂Xi
· ∂Xi

∂Ui
=
∂Γf
∂Xf

· Φ(ti, tf ) · ∂Xi

∂Ui
(23)

For example, Equation 24 shows how to change the orbital energy ξ by a change in velocity in the same
frame as the state transition matrix, where Vix is the X component of the velocity vector at time ti. Equation
25 shows how this formulation would replace the full Jacobian where the objective is a specific orbital energy
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and the control vector is simply all three components of the velocity in the frame of the STM. One will note
that ∂Xf

∂Xi
· ∂Xi

∂Vix
is simply the fourth column of the state transition matrix when the states are represented as

Cartesian vectors. Therefore, in Equation 25 the simplification to ∂Xf

∂Vix
is used.

∂ξf
∂Vix

=
∂ξf
∂Xf

· ∂Xf

∂Xi
· ∂Xi

∂Vix
(24)

∂ξf
∂Vi

=
[
∂ξf
∂Xf
· ∂Xf

∂Vix

∂ξf
∂Xf
· ∂Xf

∂Viy

∂ξf
∂Xf
· ∂Xf

∂Viz

]
(25)

Continuing with this example, one would perform the pseudoinverse as detailed in Equations 21 and 22.
Applying a Newton-Raphson differential correction, a single propagation would be performed from ti to tf ,
time at which the energy error would be computed. The iteration is described in Equation 26.

δVi+1 =

(
∂ξf
∂Vi

)−1

·∆ξ Vi+1 = Vi + δVi+1 (26)

VALIDATION

Nxy Space is a blazing fast toolkit for mission design and orbit determination, programmable in Rust
and soon in Python.11 A searchable mathematical specification and algorithmic description (MathSpec) is
freely available online and regularly updated.7 This MathSpec also details the validation of each algorithm
as compared to NASA GMAT. Nyx is typically at least two times faster and does not suffer from common
software bugs like memory leaks thanks to the Rust programming language. Moreover, Nyx is open-sourced
under the AGPLv3 license and can be easily executed in a containerized environment such as Docker.12, 13

This allows Nyx to be especially well suited for Monte Carlo analyses on the cloud.14

Table 2 shows two validation test cases of using hyperdual numbers for orbital targeting. In these examples,
an impulsive maneuver is computed and the results are compared to the same setup in GMAT. For simplicity,
two-body dynamics are assumed. The initial state has a semi-major axis of 8000 km, an eccentricity of 0.2,
an inclination of 30◦, a RAAN and argument of periapse of 60◦, and the orbit is set at periapse (i.e. the true
anomaly is zero).

Table 2. Hyperdual targeting validation

Objective Finite differencing Hyperdual targeting
∆v (m/s) Iterations Time (s) ∆v (m/s) Iterations Time (s)

SMA = 8100 km 35.504 3 0.326 35.505 3 0.099
SMA = 8100 km and ECC = 0.4 3116.1 8 0.226 3094.0 8 0.104

CONCLUSION

This paper describes a novel approach to arbitrary orbital element targeting without employing finite dif-
ferencing. One of the key advantages of the hyperdual formulation is that it allows for the computation of the
state transition matrix at high-fidelity, regardless of the complexity of the dynamics and without any signif-
icant impact on computational time. Another key advantage is faster convergence speeds without having to
tune perturbation values. A limitation of this method is that the state transition matrix must provide a valid
linearization of the orbit dynamics throughout the transfer arc. Therefore, future research should investigate
using this method for the correction of the orbital elements using multiple-shooting so as to avoid any break
in the linearization.
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